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CALCULATING CONVECTIVE HEAT EXCHANGE IN A HYPERSONIC VISCOUS SHOCK LAYER 

V. G. Shcherbak UDC 533.6.011 

The streamlining of bodies with catalytic surfaces is investigated within the 
framework of a model of a hypersonic three-dimensional viscous shock layer. 

With the motion of a body on an entry glide path the segment of the trajectory subjected 
to heat stresses lies in the region of nonequilibrium dissociation in which consideration 
must be given to a variety of physicochemical processes. The solution of such problems with- 
in the scope of total Navier-Stokes equations involves considerable difficulties, even when 
using the latest computer equipment, and a solution has been found only for axisymmetric 
flows. In order to carry out mass calculations it is expedient to employ simplified models 
and approximate relationships which permit estimates of the solution with retention of ac- 
ceptable accuracy. 

The present paper covers an investigation into the flows of heat to an indestructible 
blunt-body surface, and this study is based on the equations of a three-dimensional hyper- 
sonic viscous shock layer [i]. The equations describing the flow contain terms from the 
equations for the boundary layer and the nonviscous shock layer in hypersonic approximation. 
A model for a hypersonic or thin viscous shock layer was first proposed in [2] for two-dimen- 
sional flows. This model is an asymptotic form of the Navier-Stokes equations for large 
Mach and Reynolds numbers, as well as for the density ratios behind and in front of the shock 
wave, which is characteristic of the main portion of the glide trajectory. 

The nonequilibrium chemical reactions and the multicomponent diffusion are taken into 
consideration in these equations. Thermal and pressure diffusion can be neglected. It is 
assumed that the internal degrees of freedom are excited in equal measure. 

An absence of heat flow to the body is assumed in the boundary conditions at the sur- 
face of an impermeable body, and the effects of catalytic atom recombination at the wall 
are taken into consideration. The generalized Rankine-Hugoniot relationships are used as 
the boundary conditions at the shock wave, and these relationships allow us to take into 
consideration the effects of molecular transfer within the shock-wave zone. 

The method of numerical solution is analogous to that described in [i]. Unlike that 
particular reference, provision is made in the equations for all of the nonsequential space 
measurement terms, thus allowing us more exactly to determine the flows of heat in regions 
of lower Reynolds numbers than was the case in [i]. 

Let us examine the flow in the vicinity of the critical point of a convex blunt body 
which is the point at which a plane perpendicular to the velocity vector of the approaching 
flow is tangent to the surface of the body. The equation for the surface of the body in 
this vicinity can be approximated to an accuracy of second-order terms by the equation of 
an elliptic paraboloid: 
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where R l and R 2 are the radii of the principal curves at the critical point, and for the 
direction of the y3 axis we have chosen the direction of the velocity vector for the ap- 
proaching flow. Let R l be the smaller of the curvature radii. The parameter k will then 
vary in a range from 0 to i. 

Figure 1 shows the influence exerted by the parameter k and the curvature radius on 
heat exchange. It follows from our numerical study that for nonequilibrium streamlining, 
as in the case of the flow of a homogeneous gas [4], the heat flow to the critical point 
of a double curvature can be determined approximately from the flow of heat to an axisym- 
metric critical point exhibiting curvature 

R 2 + " 

The c a t a l y t i c  a c t i v i t y  o f  t h e  s u r f a c e  and t h e  p a r a m e t e r s  o f  t h e  a p p r o a c h i n g  f low must  c o i n -  
c i d e  in  t h i s  e a s e ,  I t  s h o u l d  be n o t e d  t h a t  t h e  r e l a t i o n s h i p  be tween t h e  r e l a t i v e  h e a t  f low 
q ( k ) / q ( 1 )  and t h e  p a r a m e t e r  k v a r i e s  f o r  d i f f e r e n t  p o i n t s  on t h e  t r a j e c t o r y  and in the  models  
o f  t h e  h e t e r o g e n e o u s  r e a c t i o n s  [ 5 ] .  

Comparison of the limit case of two-dimensional streamlining (k = O) and axisymmetric 
streamlining in the case of a curvature radius greater by a factor of two (curves 5 and 6) 
yields the greatest error. The difference in the heat flows does not exceed 5, 9, and 8%, 
while the equilibrium surface temperature for an ideal catalytic surface, a noncatalytic 
surface, and the model [6] of the heterogeneous reactions is 18, 28, and 25 K, respectively; 
the recombination coefficients in the model are dependent on temperature. The chemical com- 
position of the air at the surface in this case is approximately identical, while the struc- 
ture of the flow differs substantially. The shock wave in the case of two-dimensional flow 
is greater by a factor 2-2.5 than in the case of axisymmetric flow. 

As the parameter k increases from 0 to i, the accuracy in determining the flow of heat 
is improved. Thus, for k = 0.4, the heat flows, with an accuracy of 2%, and the equilib- 
riumsurface temperature, accurate to within 6 K, coincide with the quantities for the cor- 
responding axisymmetric flow (calculations 3 and 4). However, if for purposes of the esti- 
mating calculations we employ the data from axisymmetric streamlining of a body with a 
radius equal to one of the radii of the principal curvatures of the three-dimensional body, 
this might result in significant error in the determination of the heat flow, particularly 
in that segment of the trajectory subjected to heat stresses. For example, when k = 0.4, 
R I = 0.5 m, the calculation of an axisymmetric body with a radius R = 0.5 m exaggerates the 
heat flow by more than 20 and 30%, respectively, for ideal-catalytic (curves 1 and 3) and 
noncatalytic surfaces. The equilibrium temperature in the heat-stress segment of the tra- 
jectory is higher than 90-105 K. 

To improve accuracy in determining the flow of heat at a three-dimensional critical 
point on the basis of data from two-dimensional streamlining we can employ the following 
procedure. When 0.4 ~ k ~ 1 we calculate the streamlining of an axisymmetric body of radius 
R = 2R1/(k + i), and when 0 ~ k < 0.4 we calculate the streamlining of a two-dimensional 
body with radius R = R1/(k + i) (calculations 5 and 7). In this case, the heat flows will 
coincide with an accuracy of up to 2%. 

Let us note that if for purposes of studying the streamlining of bodies moving at great 
altitudes we take into consideration the rate of slippage and the temperature jump at the 
surface (the form of the boundary conditions is given in [5]), then in this case for the 
determination of the heat flow to a double-curvature critical point we can employ the same 
degree of accuracy as in the method proposed above. 

Maximum heat flows are attained in the streamlining of bodies with an ideal catalytic 
coating. As was mentioned in [i], the maximum heat flows can be estimated with an accu- 
racy of up to 5%, if we make use of the results from calculations of the streamlining of 
bodies by a homogeneous two-atom gas (curves 1 and 2). 

For a body with a given surface temperature the law of binary similarity 9~R = eonst 
is valid in the region where dissociation is the predominant reaction [7]. The calculations 
carried out for v < i0 km/sec showed that the dimensionless heat flow as a function of 9=R 
is represented by a single curve as R changes from 0.i to 5 m all the way to Re~ ~ 105 . When 
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Fig. i. Heat flow (1-7) and velocity of body (8) as a function 
of flight altitude: i, 2) R l = 0.5 m; k = i; 3) 0.5 and 0.4; 
4) 0.71 and i; 5) 0.5 and 0; 6) 1 and i; 7) 0.6 and 0.2; 8) 
data from [3]; i, 3, 4) ideally catalytic surface; 2) homogene- 
ous gas; 5-7) calculation for model [6] of heterogeneous reac- 
tions, q, 104 W/m2; v, km/sec; H, km. 

Fig. 2. Ratio of heat-flow reduction in the case of a noncata- 
lytic surface as a function of the Reynolds number, k = i: i) 
R = 0.I; 2) i; 3) 5; solid lines) v = 7.9; dashed lines) 5. p~, 
kg/m 3 . 

we have the relationship between log p~R and the dimensionless heat flow to the axisymmetric 
critical point, we can determine the flow of heat to the three-dimensional critical point 
with a smaller curvature radius R l by a simple shift of log (2/(k + i)) along the axis of 
abscissas. 

Of greatest interest in the study of the streamlining of an indestructible surface is 
the equilibrium temperature of the body. It is determined from the condition that the en- 
tire heat flow is radiated in equilibrium from a surface characterized by some emissivity. 
In this case, the relationship between the heat flow and p~R is separated for the various 
curvature radii immediately after cessation of the "frozen-in" flow. Thus, when Re~ = 105 , 
v = 5 km/sec the dimensionless heat flow in the case of an ideal catalytic surface for R = 
5 m is greater by 25% than when R = 0.i m. 

This study has demonstrated that for an equilibrium radiating surface the law of binary 
similarity can be used to determine the extent to which the flow of heat is reduced to a 
body with a constant rate of heterogeneous recombination. In this form the law of binary 
similarity is approximately satisfied (for the case shown in Fig. 2, with an accuracy of 
up to 6%) until the minimum value is attained for the heat flow as compared to the flow of 
heat to an ideal catalytic surface. This corresponds to the instant at which the degree 
of dissociation at the outer boundary of the viscous layer is maximum, while the recombina- 
tion within the layer is almost completely frozen. With subsequent increase in the Reynolds 
number, the recombination process is intensified and the curves for the various curvature 
radii diverge. In using the model [6] for the progress of heterogeneous reactions, we find 
that the degree of reduction in the flow of heat depends significantly on the curvature radius. 

We can use the results shown in Fig. 2 for the determination of the ratio of the reduction 
of the heat flow to the critical point of a double curvature, if we employ the method pro- 
posed above. Here the error in determining the heat flow to an ideal catalytic and noncata- 
lytic surface is directed to one side while the ratio q/qmax will be determined with an error 
that is smaller than the error in determining the dimensional heat flows. 

NOTATION 

yl, y2, y3, the Cartesian coordinate system; RI, R2, R, curvature radii at the critical 
point; k, ratio of the principal curvature radii; q, heat flow; v, velocity of flight; H, 
altitude; p~, density of the incident flow; Re~, Reynolds number calculated on the basis 
of the incident flow parameters. 
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COMPARATIVE EVALUATION OF APPROXIMATE METHODS FOR SOLVING 

ONE-DIMENSIONAL PROBLEMS INVOLVING MOVABLE BOUNDARIES 

~. A. Bondarev and F. S. Popov UDC 536.01 

Estimates of accuracy have been obtained for the most extensively employed ap- 
proximation methods for the solution of the Stefan problem. 

The overwhelming majority of problems involving unknown movable boundaries (problems 
of the Stefan-Verigin type) are not solved in quadratures. It thus becomes necessary to 
construct rather simple approximate solutions which might be used not only in estimation 
calculations, but also to verify the effectiveness of computational algorithms based on fi- 
nite-difference methods. An attempt is made in this article, through comparison of existing 
analytical solutions, to evaluate the accuracy and scope of applicability for the most popu- 
lar approximate methods of solution for Stefan problems in the case of a plane-parallel flow 
of heat: the Leibenzon-Charnyi method (LChM) [i, 2], the Barenblatt-Goodman integral method 
(IM) [3, 4], the successive approximation method (SAM) [5], and the combination method (CM) 
whose essence is explained below. 

In the general case, the parabolic equation 

OT a c)(  OT)  
x "  . ( 1 ) Ot x" Ox Ox 

is satisfied by the following functions [7]: 

($) = e r r  (~), Ei (-- ~a), 

r e s p e c t i v e l y ,  f o r  n = 0, 1, 2. Here 

exp (-- ~z) 
-I/E-erk (0 ( 2 ) 

= x/2 V~ (3) 

The solution of the specific boundary-value problem for Eq. (I) can be presented in 
the form 

7" = A + B ~  (0 .  ( 4 )  

It is important here to underscore that A and B are not simply coefficients which must be 
determined from specific boundary-value problems, but rather integration constants. In par- 
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